

R.T.R.+

Formulations biphasiques
Phosphate tricalcique ß (ß-TCP)
+ Hydroxyapatite (HA)

Composition biphasique: Idéale pour la régénération osseuse

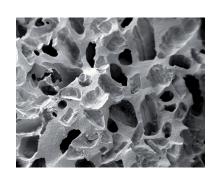
Le principe de base de la composition de R.T.R.+ est le juste équilibre entre :

La stabilité de I'hydroxyapatite (HA)

Agit comme un échafaudage offrant une structure idéale à l'adhésion cellulaire.

Fournit une stabilité à long terme grâce à sa résorption lente.

La résorption rapide du B-TCP


Il commence à libérer immédiatement des ions calcium et phosphate dans les micropores favorisant la bioactivité.

Des propriétés idéales issues de la Technologie MBCP®

Grâce à un processus de fabrication spécial, cette structure micro et macroporeuse imite l'os humain et se révèle être une matrice ostéogénique idéale pour la régénération osseuse (1).

Microporeux: perméable aux fluides biologiques

Macroporeux: colonisation cellulaire et ostéo-conduction

Entièrement synthétique & résorbable

R.T.R.+ offre un taux de réussite élevé sans risque associé grâce à sa composition entièrement synthétique, sans risque de transmission de pathologies. (2, 3, 4, 5).

L'hydroxyapatite et le phosphate tricalcique ß sont tous deux entièrement résorbables et génèrent progressivement de l'os naturel (6, 7).

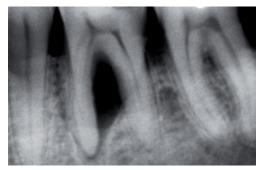
- * Technologie MBCP®: Technologie de phosphate de calcium biphasique micro-macroporeux
 (1) Guy Daculsi, Thomas Miramon. Technologie MBCP ™: greffes alloplastiques intelligentes pour la régénération des tissus osseux
- (2) Ransford 1998 "Synthetic porous ceramic compared with autograft in scoliosis surgery 341 patient randomised study" The Journal of Bone and Joint Surgery
- (3) Pascal Mousselard 2006 "Anterior Cervical Fusion With PEEK Cages: Clinical Results of a Prospective, Comparative, Multicenter and Randomized Study Comparing Iliac Graft and a Macroporous Biphasic Calcium Phosphate" North American Spine Society
- (4) Lavallé 2004 "Biphasic Ceramic wedge and plate fixation with locked adjustable screws for open wedge tibial osteotomy"
- (5) Changseong 2014 "Eight-Year clinical follow-up of sinus grafts with Micro-Macroporous biphasic calcium phosphate granules" Key Engineering Materials
- (6) R.Z LeGeros et al. 1988 "Significance of the Porosity and Physical Chemistry of Calcium Phosphate Ceramic Biodegradation Bioresorption" Journal of Materials Science: Materials in Medicine
- (7) Clemencia Rodriguez et al. 2007 "Five years clinical follow-up bone regereration with CaP Bioceramics" Key engineering materials

Deux formulations en fonction du temps de résorption* souhaité

Indications

Mode d'emploi

Spécifications techniques


Taille des granules	0,5-1 mm		
Porosité globale de 70%	Réseau interconnecté de macropores et micropores qui permet la colonisation des cellules osseuses et des fluides biologiques de manière uniforme au sein de la matrice		
Macroporosité 300-600 microns en moyenne	Espaces interconnectés qui favorisent l'infiltration biologique et la colonisation par les cellules osseuses		
Microporosité < 10 microns	Les micropores sont des espaces inter-cristallins où la dissolution et la re-cristallisation s'opèrent		
Ostéo-conducteur	Fournit la matrice nécessaire à la croissance osseuse		
Bioactif	Pour un échange ionique : la dissolution du Phosphate Tricalcique (TCP) et la précipitation d'hydroxyapatite créent une nouvelle interface bioactive avec les cellules osseuses		
Stérilisation	Irradiation		
Péremption	5 ans		

^{*}Temps de résorption estimés en fonction de l'indication chirurgicale et de l'état de santé du patient

Cas clinique 1 : Comblement après extraction avant pose d'implant

Dr Bruno Salsou - Toulon

Patient de 55 ans présente une mobilité importante sur la dent 36. Un examen radiographique rétro-alvéolaire a montré un défaut de la furcation de niveau 3 empêchant la conservation de la dent.

Examen préopératoire Atteinte de la furcation de 36.

Décision thérapeutique

La décision a été prise d'extraire la dent et de réaliser un comblement osseux afin de permettre la pose de l'implant.

Protocole opératoire

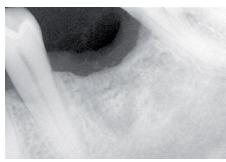
Situation clinique initiale.

Dent fracturée extraite.

Alvéole après extraction.

Seringue avec matériau de comblement R.T.R.+/ Technologie MBCP®

Seringue R.T.R.+ / Technologie MBCP® imprégnée de sang.


Alvéole de 36 comblée avec R.T.R.+ / Technologie MBCP®.

Protection du greffon avec une membrane PRF.

Repositionnement du lambeau et suture avec un fil de suture 3-0.

Suivi à 6 mois : la radiographie montre un gain osseux significatif. La pose de l'implant peut désormais être envisagée dans des conditions optimales.

Conclusion / commentaires du praticien

- La présentation de R.T.R.+ / Technologie MBCP® dans des seringues préremplies facilite la manipulation et le placement du matériau.
- Le mélange sang/granules contribue à assurer la rétention du matériau au sein de l'alvéole, élément essentiel à une bonne cicatrisation osseuse.

Cas clinique 2 : Élévation de sinus pour pose d'implant

Dr Bruno Salsou - Toulon

Perte de 15 et 16 chez un patient de 25 ans.

Un examen radiographique rétroalvéolaire a montré un volume sinusien important, ce qui compromet la pose d'implants pour remplacer les dents manquantes.

Examen préopératoireExamen radiographique montrant un grand volume sinusien.

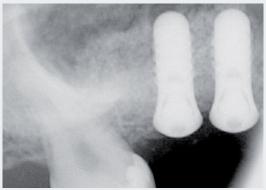
Décision thérapeutique

La décision a donc été prise d'effectuer une élévation du sinus.

Protocole opératoire

Ouverture d'un volet osseux par piézochirurgie.

Mise en place de R.T.R+ / Technologie MBCP® à l'aide de la seringue.


Comblement sinusien terminé.

Repositionnement du lambeau pour fermer hermétiquement le site. Sutures. Fin de l'intervention.

Contrôle post-opératoire immédiat : examen radiographique panoramique montrant le comblement osseux obtenu suite à l'élévation du sinus dans le secteur 1.

Suivi à 6 mois : pose de 2 implants, 4.1 mm de diamètre et 10 mm de longueur.

Conclusion / commentaires du praticien

- La consistance très granuleuse du matériau permet une mise en place plus aisée et empêche la dispersion des granules de R.T.R.+/ Technologie MBCP®.
- La stabilité du matériau optimise également la cicatrisation osseuse.

Références

Auteurs	Titre	Revue	Année
Guy Daculsi, Thomas Miramond	MBCP™ Technology: Smart Alloplastic Grafts For Bone Tissue Regeneration	-	-
Guy Daculsi	Smart scaffolds: the future of bioceramic	Journal of Materials Science: Materials in Medicine	2015
R.Z. LeGeros et al.	Biphasic calcium phosphate bioceramics: preparation, properties and applications	Journal of Materials Science: Materials in Medicine	2003
R.Z. LeGeros et al.	Significance of the Porosity and Physical Chemistry of Calcium Phosphate Ceramic - Biodegradation-Bioresorption	Journal of Materials Science: Materials in Medicine	1988
Cyril d'Arros, Thierry Rouillon, Joelle Veziers, Olivier Malard, Pascal Borget, Guy Daculsi	Bioactivity of Biphasic Calcium Phosphate Granules, the Control of a Needle-Like Apatite Layer Formation for Further Medical Device Developments	Frontiers in Bioengineering and Biotechnology	2020
G. Daculsi et al.	Performance for bone ingrowth of Biphasic calcium phosphate ceramic versus Bovine bone substitute	Key Engineering Materials	2006
N. Mailhac, G. Daculsi	Bone Ingrowth for Sinus Lift Augmentation with Micro Macroporous Biphasic Calcium Human Cases Evaluation Using MicroCT and Histomorphometry	Key Engineering Materials	2008
Clemencia Rodríguez, Alain Jean, Sylvia Mitja and Guy Daculsi	Five Years Clinical Follow up Bone Regeneration with CaP Bioceramics	Key Engineering Materials	2007
K. Changseong, K. Sung Cho, C. Daculsi G., E. Seris, G. Daculsi	Eight-Year Clinical Follow-Up of Sinus Grafts with Micro-Macroporous Biphasic Calcium Phosphate Granules	Key Engineering Materials	2014
Lee JH, Jung UW, Kim CS, Choi SH, Cho KS	Histologic and clinical evaluation for maxillary sinus augmentation using macroporous biphasic calcium phosphate in human	Clinical Oral Implants Research	2008

80% ß-TCP 20% Hydroxyapatite

40% B-TCP 60% Hydroxyapatite

Présentation

2 formules possibles:

R.T.R.+80/20R.T.R.+ 40/60

Favorise une formation osseuse rapide

Respecte pleinement le rythme de création de l'os naturel

Veuillez consulter les indications et la notice d'utilisation de R.T.R.+ sur notre site internet www.septodont.fr. Dispositif médical de Classe III réservé à l'usage professionnel dentaire, non remboursé par les organismes d'assurance maladie au titre de la LPPR. Organisme certificateur CE0123 TÜV SÜD Product Service GmbH. Fabricant: Biomatlante SA. Lire attentivement les instructions d'utilisation figurant sur la notice et l'étiquetage avant toute utilisation.

Septodont - 58 rue du Pont de Créteil - 94100 Saint-Maur-des-Fossés - France Tél.: 01 49 76 70 02 / Pour plus d'informations, rendez-vous sur : www.septodont.fr

